

La calculatrice scientifique non programmable est autorisée Le sujet comporte quatre exercices

On donnera les expressions littérales avant de passer aux applications numériques

Exercice I (7 points):

- Etude de la pile zinc-cuivre.
- Etude de l'hydrolyse d'un ester.

Exercice II (2,5 points):

- Etude de la désintégration du plutonium 241.

Exercice III (4,5 points):

- Réponse du dipôle RL à un échelon de tension ascendant.
- Réception d'une onde modulée en amplitude.

Exercice IV (6 points):

- Etude du mouvement d'une particule chargée dans un champ magnétique uniforme.
- Etude énergétique d'un pendule simple.

<u>الصفحة</u> 2 R

RS28F

الامتمان الوطَّبِي الموحد للبكالوريا – الدورة الاستدراكية 2018 – الموضوع – ماحة، الفيزياء والكيمياء – محية العلوم التيريبية مملك العلوم الفيزيائية – خيار فرنسية

Barème

0,5

0,5

EXERCICE I (7 points)

Les parties I et II sont indépendantes

Partie I- Etude de la pile zinc-cuivre

Lors de leur fonctionnement, les piles électrochimiques convertissent une partie de l'énergie chimique en énergie électrique. On étudie dans cette partie de l'exercice le principe de fonctionnement de la pile zinc-cuivre.

On réalise la pile zinc-cuivre en utilisant le matériel et les produits suivants :

- un bécher contenant une solution aqueuse de sulfate de zinc $Zn_{(aq)}^{2+} + SO_{4(aq)}^{2-}$ de concentration molaire $C_1 = 1 mol.L^{-1}$;
- un bécher contenant une solution aqueuse de sulfate de cuivre $Cu_{(aq)}^{2+} + SO_{4(aq)}^{2-}$ de concentration molaire $C_2 = 1 mol.L^{-1}$;
- une lame de zinc et une lame de cuivre;
- un pont salin.

On relie les électrodes de la pile à un conducteur ohmique en série avec un ampèremètre qui indique le passage d'un courant électrique d'intensité constante I = 0.3A dans le circuit.

Données:

- La constante de Faraday : $1F = 9,65.10^4 C.mol^{-1}$;
- Masse molaire atomique du cuivre : M(Cu)=63,5 g.mol⁻¹;
- La constante d'équilibre associée à l'équation $Cu_{(aq)}^{2+} + Zn_{(S)} \xrightarrow{1} Zn_{(aq)}^{2+} + Cu_{(S)}$ est $K = 1, 7.10^{37}$.
- 0,5 1- Calculer la valeur du quotient de réaction Q_{1,1} à l'état initial du système chimique.
- **0,5 2-** En déduire le sens d'évolution spontanée du système chimique.
- 0,5 3- Ecrire l'équation de la réaction chimique à la cathode.
- ,75 4- La pile fonctionne pendant une durée $\Delta t = 5h$. Calculer la masse m(Cu) du cuivre déposé pendant la durée Δt .

Partie II- Etude de l'hydrolyse d'un ester

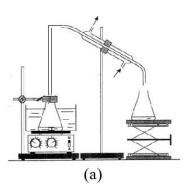
Les produits et les caractéristiques de la réaction d'hydrolyse d'un ester varient selon la nature du milieu réactionnel.

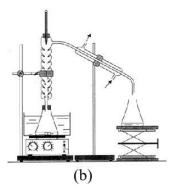
Cette partie de l'exercice a pour but d'étudier l'hydrolyse d'un ester en milieu acidulé et l'hydrolyse basique de cet ester.

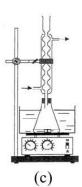
1. Hydrolyse de l'éthanoate de méthyle

On mélange dans un erlenmeyer 0,6mol d'éthanoate de méthyle pur CH₃ -CO₂ -CH₃ avec 0,6mol d'eau distillée. On ajoute quelques gouttes d'acide sulfurique concentré et on chauffe à

reflux le mélange réactionnel pendant un certain temps. Une réaction chimique se produit.


A l'équilibre, il reste 0,4mol d'éthanoate de méthyle.


- 1.1. Quel est le rôle de l'acide sulfurique ajouté?
- **0,5 1.2.** Citer deux caractéristiques de cette réaction.
 - **1.3.** Choisir parmi les montages expérimentaux (a), (b) ou (c), le montage utilisé pour le chauffage à reflux.



RS28F

الامتمان الوطبي المومد للبكالوريا – الدورة الاستحراكية 2018 – الموضوع – عاحة، الفيزياء والكيمياء – خيار فرنسية

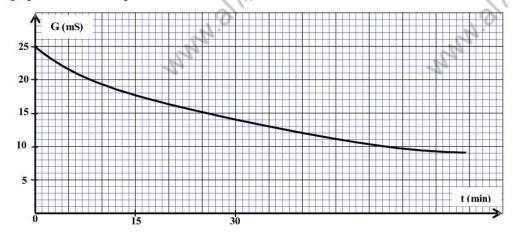
0,75 0,75

0,5

- 1.4. Ecrire l'équation de la réaction chimique étudiée en utilisant les formules semi-développées.
- 1.5. Calculer la constante d'équilibre K associée à l'équation de cette réaction chimique.

2. Hydrolyse basique de l'éthanoate de méthyle

On introduit, à la date t=0, la quantité de matière n_0 de l'éthanoate de méthyle dans un bécher contenant la même quantité de matière n_0 d'hydroxyde de sodium $Na_{(aq)}^+ + HO_{(aq)}^-$ de concentration $c_0 = 10^{-2}$ mol. L⁻¹ et de volume V_0 .


On obtient un mélange réactionnel équimolaire de volume $V \approx V_0 = 10^{-1} L$.

 $L'\acute{e}quation~de~la~r\acute{e}action~chimique~produite~s'\acute{e}crit:~CH_{3}-CO_{2}-CH_{3(\ell)}+HO_{(aq)}^{-} \longrightarrow A_{(\ell)}+B_{(aq)}^{-}.$

2.1. Ecrire les formules semi-développées des espèces chimiques $A_{(\ell)}$ et $B_{(aq)}^{-}$.

2.2. On suit l'évolution temporelle de cette transformation en mesurant la conductance G du mélange réactionnel à des instants différents.

Le graphe ci-dessous représente la courbe G(t).

A chaque instant t, l'avancement x(t) peut être calculé par l'expression :

 $x(t) = -6,3.10^{-2}$. $G(t) + 1,57.10^{-3}$, avec G(t) la conductance du mélange réactionnel exprimée en siemens S et x(t) en mol.

0,75 2.2.1. Déterminer $G_{1/2}$, la conductance du mélange réactionnel quand $x = \frac{x_{max}}{2}$, x_{max} étant l'avancement maximal de réaction.

2.2.2. Trouver, en minutes, la valeur du temps de demi-réaction t_{12} .

EXERCICE II (2,5 points)

Etude de la désintégration du noyau de plutonium 241

Le plutonium 241 est un élément radioactif qui n'existe pas dans la nature, il résulte des transformations nucléaires de l'uranium 238.

Le noyau de plutonium $^{241}_{94}$ Pu se désintègre en un noyau d'américium $^{241}_{95}$ Am avec production d'une particule X.

Données:

- Masse du noyau $_{95}^{241}Am$: $m(_{95}^{241}Am) = 241,00471u$;
- Masse du noyau $_{94}^{241}$ Pu : $m(_{94}^{241}$ Pu) = 241,00529u ;
- Masse de la particule X : m(X) = 0,00055u;
- 1u=931,5 MeV.c⁻².
- demi-vie du plutonium 241 : $t_{1/2} = 14,35 ans$.

0,75 0,75

1

- 1. Ecrire l'équation de cette désintégration et préciser le type de radioactivité du plutonium 241.
- 2. Calculer, en MeV, l'énergie libérée E_{lib} lorsqu'un seul noyau $^{241}_{94}$ Pu se désintègre.
- **3.** L'activité initiale d'un échantillon radioactif du plutonium 241 est $a_0 = 3.10^6 \, Bq$. Trouver l'activité a_1 de cet échantillon à la date $t_1 = 28,70 \, ans$.

EXERCICE III (4,5 points)

Les bobines sont des composantes principales de plusieurs appareils électroménagers.

Cet exercice a pour but de déterminer expérimentalement l'inductance d'une bobine d'un mixeur électrique ménager par l'étude de la réponse du dipôle RL à un échelon de tension, et d'étudier les étapes principales pour la réception d'une onde modulée en amplitude.

Les parties I et II sont indépendantes

Partie I- Réponse du dipôle RL à un échelon de tension ascendant

Pour déterminer l'inductance d'une bobine, on réalise le montage expérimental de la figure 1 qui comporte :

- Un générateur de tension idéal de force électromotrice E ;
- Une bobine d'inductance L de résistance négligeable ;
- Un conducteur ohmique de résistance $R = 10\Omega$;
- Un interrupteur K.

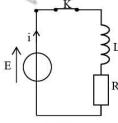


Figure 1

A l'instant t=0, on ferme l'interrupteur K et on suit, à l'aide d'un système d'acquisition informatisé, l'évolution de la tension u_L aux bornes de la bobine en fonction du temps.

Le graphe de la figure 2 représente la courbe $u_L(t)$ obtenue.

0,25

- 1. Reproduire le schéma de la figure 1 et indiquer comment brancher le système d'acquisition informatisé pour visualiser la tension $\mathbf{u}_{L}\left(t\right)$.
- 2. Etablir l'équation différentielle vérifiée par

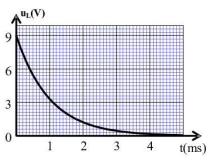


Figure 2

0,5

RS28F

الامتمان الوطيي الموعد للبكالوريا – الدورة الاستدراكية 2018 – الموضوع - عادة، الغيزياء والكيمياء — هعبة العلوم التجريبية عساك العلوم الغيزيائية — خيار خربسية

l'intensité du courant électrique i(t) traversant le circuit.

3. Sachant que l'expression de l'intensité du courant électrique traversant le circuit est : 0.5

 $i(t) = \frac{E}{R} (1 - e^{-\frac{R \cdot R}{L}})$. Trouver l'expression de la tension u_L en fonction de t, E, R et L.

- 4. Calculer la valeur de la tension entre les bornes de la bobine à l'instant $t = \tau$. (τ étant la 0,5 constante de temps).
- 5. Déterminer graphiquement la valeur de τ et déduire la valeur de L l'inductance de la bobine 0,75
- 0,75 **6.** Calculer l'énergie magnétique emmagasinée dans la bobine à l'instant $t = \tau$.

Partie II- Réception d'une onde modulée en amplitude

le schéma de la figure 3 représente un dispositif simplifié (radio AM) qui permet de recevoir une onde radio modulée en amplitude.



Figure 3

Recopier le numéro de la question et la lettre correspondante à la réponse juste

1. Le circuit bouchon (partie 1 du dispositif) comporte une antenne et une bobine d'inductance L=10mH et de résistance négligeable qui est montée en parallèle avec un condensateur de capacité C variable.

Pour sélectionner une onde radio AM de fréquence $f_0 = 530\,\mathrm{kHz}$, la capacité C doit être fixée sur la valeur:

,	·	,			,	,	·
A	9μF	В	9 nF	C	9 pF	D	9 mF

2. Sachant que la moyenne des fréquences des ondes sonores est 1 kHz et que la valeur de la résistance R_1 qui permet d'avoir une bonne démodulation de l'onde radio étudiée est $R_1 = 35 \Omega$,

la valeur de la capacité du condensateur C₁ utilisé dans la partie 2 doit être :

A $50 \mu\text{F}$ B $20 \mu\text{F}$ C 50mF D $20 n\text{F}$	A 50 μF B	A	0 μF B	20 μF	C	50 mF	D	20 nF
---	-------------------------	---	---------------	-------	---	-------	---	-------

0.25

0,5

3. La partie 3 du dispositif sert à :

). L	i partie 5 du dispos	bartie 5 du dispositif sert à .							
A	Moduler	В	Sélectionner la	C	Eliminer la	D	Détecter		
	l'amplitude.		fréquence de		composante		l'enveloppe.		
			l'onde.		continue.				

EXERCICE IV (6 points). Les parties I et II sont indépendantes

Partie I- Etude du mouvement d'une particule chargée dans un champ magnétique uniforme

Parmi les applications de la force de Lorentz, le spectroscope de masse. C'est un appareil utilisé pour séparer des particules chargées de masses ou de charges différentes.

1

Le but de cette partie de l'exercice est de déterminer la masse d'une particule chargée en étudiant son mouvement dans un champ magnétique uniforme.

Deux particules chargées He^{2+} et O^2 sont introduites en un point A, avec la même vitesse initiale \overline{V} , dans un espace où règne un champ magnétique uniforme \overline{B} , perpendiculaire au vecteur \overline{V} .

On considère que les deux particules He²⁺ et O²⁻ ne sont soumises qu'à la force de Lorentz.

Données :

- on rappelle l'expression de la force de Lorentz : $\vec{F} = q \vec{V} \wedge \vec{B}$;
- La masse de la particule He^{2+} : $m(He^{2+}) = 6,68.10^{-27} kg$;
- La figure1 représente l'enregistrement des deux trajectoires des particules He^{2+} et O^2 dans le champ magnétique uniforme \overline{B} .

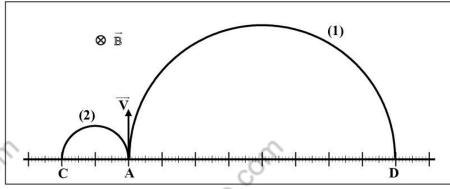
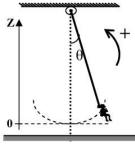


Figure1

- 1. Identifier la trajectoire correspondante à chaque particule.
- 2. En appliquant la deuxième loi de Newton dans un référentiel galiléen, montrer que le

mouvement de l'ion He^{2+} est uniforme et de trajectoire circulaire de rayon $R_{He^{2+}} = \frac{m(He^{2+}).V}{2.e.B}$


- 3. En exploitant la figure 1, déterminer le rapport $\frac{R_{O^2}}{R_{He^{2+}}}$. (R_{O^2} étant le rayon de la trajectoire de la particule O^2).
 - **4.** Montrer que la masse de la particule O^2 est : $m(O^2) = 2,67.10^{-26}$ kg.

Partie II- Etude énergétique d'un pendule simple

Une petite fille joue sur une balançoire attachée à un support fixe. On modélise le système mécanique (fille - balançoire) par un pendule simple constitué d'un fil inextensible de longueur L et de masse négligeable, et d'un solide (S) de masse m et de dimensions négligeables devant la longueur L.

On rappelle qu'un pendule simple est un cas particulier du pendule pesant.

Le pendule se trouve au repos à sa position d'équilibre stable. A la date t=0, On lance le pendule avec une vitesse initiale dans le sens positif de telle façon qu'il acquiert une énergie cinétique $E_{co}=13,33~\mathrm{J}$; le pendule effectue alors un mouvement oscillatoire sinusoïdal d'élongation maximale $\theta_{max}=0,20~rad$.

Figure

La position du pendule à un instant t est repérée par l'abscisse angulaire θ. (voir figure 2)

RS28F

الامتحان الوطيئ الموعد للبكالوريا – الدورة الاستدراكية 2018 – الموضوع

Le plan horizontal passant par la position d'équilibre stable (θ =0) est pris comme origine de l'énergie potentielle de pesanteur (Epp=0).

L'étude se limite au cas de faibles oscillations et se fait dans un référentiel galiléen lié à la terre. On néglige tout frottement.

Données:

-Longueur du pendule simple : L=2m ;

-L'intensité de pesanteur : g=9,8 m.s⁻² ;

-Dans le cas de faibles oscillations: $\cos\theta \approx 1 - \frac{\theta^2}{2}$, avec θ en radian;

-On rappelle la relation trigonométrique : $\cos^2\theta + \sin^2\theta = 1$.

1. Par analyse dimensionnelle, montrer que l'expression $T_0 = 2\pi \cdot \sqrt{\frac{L}{g}}$ est homogène. 0,5

2. L'équation horaire du mouvement de ce pendule est : $\theta(t) = \theta_{max} \cdot \cos(\frac{2\pi}{T}t + \phi)$. 0,75

Déterminer, dans le système international des unités, les valeurs de T_0 et de φ .

3. Montrer que l'expression de l'énergie potentielle de pesanteur du pendule est de la forme : 0,5

 $E_{pp}(t) = \frac{1}{2} \text{m.g.L.} \theta_{max}^2 .\cos^2(\frac{2\pi}{T_0} t + \phi).$

4. Montrer que l'expression de l'énergie mécanique du pendule est de la forme: $E_m = \frac{1}{2}$ m.g.L. θ_{max}^2 . 0,75

5. En exploitant la conservation de l'énergie mécanique, calculer la masse m du solide (S).